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CONSTRUCTION OF EXPLICIT FUNCTIONS FOR DETERMINING 

THE COEFFICIENTS OF INTERNAL HEAT AND MASS TRANSFER 

FROM THE DATA OF MEASUREMENTS IN NONSTATIONARY 

REGIMES 

G. T. Aldoshin, A. S. Golosov, 
V. I. Zhuk, and D. N. Chubarov UDC 536.24 

For a number of laws governing the variation of the characteristics of internal heat 
and mass transfer with respect to a spatial variable, we derive explicit functions 
relating them to the results of measurements of nonstationary temperatures or other 
potentials. 

Many physical processes can be described by partial differential equations of the type 
represented by the nonstationary heat-conduction equation with coefficients which depend on a 
spatial variable. It is therefore of great practical interest to construct effective calcula- 
tion algorithms whereby the data of measurements of some transfer potentials (for example, 
temperatures) can be used for estimating the parameters determining the character of the 
spatial variation of the coefficients involved. In some cases, exact explicit functions 
sufficiently suitable for practical realization can be obtained by using the method employed 
in [I, 2], namely, an analysis of the properties of the analytic solutions of the problem in 
the space of Laplace mappings. 

In the case when it is permissible to describe a real process by a one-dimensional para- 
bolic operator with coefficients dependent on a spatial variable, of the form 

r -  k a_a X(r ) r  ~ aT ( r ,  T) - - c ( r )  aT( r ,  T) , (1)  
Or Or a~ 

where k = 0, i, 2 for plane, cylindrical, and spherical fields, respectively, it is possible 
for a number of specific laws of variation of ~ and c to obtain exact analytic solutions [3]. 
In particular, in the space of Laplace mappings a solution of the form 

1 

i l I i AI_  1 - -  

m m 

I Ira l} E ~ �9 + B K  1 E 2 (2 )  
m n z  
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(I_I/m and K_i/m are modified Besse! and MacDonald functions) is valid when %r k and cr k 

according to the laws 

;S, c-o,~; ;o(1+~0 ~, 7o(1 +~0~; fo~Xp(-z0, ~oeXp(--,~). 

The parameters E and m are equal, respectively, to 

m--1 m - - 2  
n - - l - k 2  

(1-0  E - ~ -  o , t n - -  

1 - - !  
m-- I  m--2  m - - 2  

2 n - - 1 4 - 2  
E o a (1 l) 2 

l - - I  

rn--I m--2 
1 - - n  

E - -  ~o , m = .  
l 

vary 

In the simplest case, when %(r) = %0r4, c(r) -Cor~o : 

T (r, s) = Ar  
t l 
2 (h .~ lo- -J)  - -  (no--loq-2) 

L , ,o-- lo+2 V -- FJ 

for a plane layer, a solid cylinder, and a sphere; 

(3) 

T (r, s) = Br  

1 1 o (h+lo--l) - -  (no--lo~2) 

,~o-l~ no - -  lo + 2 a-T 

for a semibounded solid; 

ao = XotCo. 

On the basis of formulas (3) and (4), the relation in the space of mappings between the 
temperatures at the points r = 0 and r = rl has the form 

1--(lo+k) v 

rIO(S) ~ 2F1 2 ~r~(1 - - ' )  $-~- [ 2f |  2 ~ / a s - ' ~  ] 
(no -- lo + 2) v a'~/2 I_~, n o -  lo + 2 

n~--7o-?-2 

o r  

(4) 

(5) 

l--(/o+k) v no--lo-t-2 

~(s)= (no_&+2)~a,d/2s K,~ no2r~--lo+ 2 7 -  ," (6) 

~(s)=T(r,, s)/T(O, s); , : :  1--(Zo+k) 
2 + no - -  lo 

For this case, we consider the problem of determining the parameters no, lo, ao from measure- 

ments of the temperatures T(,0, T), T(rl, z), From the form of (5) and (6) we can conclude 

that the ratio of the mappings 9~(s) = T(rl, s)/T(0, s) is one of the particular solutions of 
the ordinary differential equation in the Laplace transform parameter 

~,+  1 - 2____~ ~ + ~ = o, ( 7 )  
Z 

where 

Z := 
2r~ 2 V F  

(~0- 4 + 2) V~ " 
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After passing from ~s to s and from @(s) to its expression in terms of T(rl, s), T(0, s), we 
find 

s {[T'; (s) To (s) - -  T, (s) T~ (s)] To- (s) - -  2T~ (s) [TI (s) To (s) - -  T~ (s) T~ (s)l} + 

r'{-l~ T1 (s) T~ (s), + (1 - -  ~) To- (s),[TI (s) To- (s) - -  T a (s) T2 (s)l = ao (no - -  lo -q- 2) ~ 

T 1 (s) ~- T (rl, s), T~ (s) ~ T (0, s). 
(8) 

After making use of the theorem on the inversion of mappings in the space of originals we 
have 

1 D ("17) - -  'V~), ('17) = dq) (-I~'), (9) 
where 

r ('0 = 

"7 T "-7 
1" (2"~ - -  3T-) T 2 ('~ - -  ~) S ( T - -  2if) T,z ( 7 - -  t$) T; (~) d6d~- - -  .I T= ('~ - -  ~) .f (7--- 2t~) To. ( T - -  x$) T 1 (~) d@dw,, 

0 0 0 

(9') 

~' ('~) = ,I To ('~ - -  ~') .I (~ ' -  2~) To ~ - -  ~) T~ (@) dOd'~; 
0 0 

t 9 ('Q = . T 2 ('~ - -  ~ .[ T~ (T - -  t$) T 2 (iS) dgd~,, 
0 0 

d = r~o--lo+2 

ao (no -- lo + 2) z 

(9") 

(9' '') 

From relation (9), for the case under consideration, on the basis of measurements of the 

values of the temperatures (or other potentials), we can determine at the points r = 0 and 
r = rl the values of the parameters ~ and d. Since these two parameters are constant, each 
of them individually can be determined either in a single realization on the basis of measure- 

ments of TI and T2 or in two with different laws of the thermal effect. From differentia- 
tion of (9), we have 

Moreover, the following relations hold: 

d = *i~ l j  -- *Abli v *i  -- dqoi ' 1  --" dq~j ; = . - -  , (ii) 

where the subscripts i, j relate to different time intervals of a single realization or to 
arbitrary ones of two different realizations. The relations obtained do not, however, enable 

us to determine individually all the desired parameters. In order to obtain this information, 
we must evidently have the results of temperature measurements not only at r = 0 and r = rl 
but also at some point r = r2. Then from (9), after determining the parameters ~ and d by 
one of the methods mentioned above, we obtain 

from which it follows that. 

(* -- = ( r, l~ .... <12) 
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(14) 

r~o-lo+2 .r~o-4+2 
a~ ~- (no - - l o  -~ 2) z d r : q  --- (no - -  lo ~- 2) 2 dr=r2 (15)  

It can be shown that for other relative locations of the measurement points as well, 
and furthermore, for other laws of variation of % and c with respect to the spatial variable, 
we can construct exact explicit functions of various degrees of complexity. The essence of 
the method of construction of such functions consists in finding in three-dimensional space 
some Laplace mappings of differential equations in the transform parameter, one of whose 
particular solutions is the relation of the mappings of the temperatures at some points in 
terms of a coordinate which in turn is expressed by means of some special functions whose 
arguments contain the desired coefficients. 

NOTATION 

r, T, @, time; r, coordinate; T, temperature; %, thermal conductivity; c, volumetric 
heat capacity. 

i. 

. 

. 
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NONSTATIONARY HEAT TRANSFER BY THE METHOD OF 

SOLVING THE INVERSE HEAT-CONDUCTION PROBLEM 

I. M. Lagun UDC 536.244 

The heat-transfer coefficient between a gas and a solid under nonstationary condi- 
tions is investigated and computational dependences are obtained. 

In multimode, pulse power plants of short operating time an important role is played by 
transients that are characterized by a gasdynamic and thermal nonstationarity. As investi- 
gations showed, the thermogasdynamic nonstationarity can be manifest during a large or even 
the whole operating time. 

The thermal state of a construction using transition regimes has been studied inade- 
quately. The mean temperatures, as well as the temperature fields determined by means of the 
averaged parameters, do not reflect the features of the transients and do not satisfy the 
requirements of practice [i]. 

In the general engineering [2, 3] and specialized [4, 5] purpose papers, the heat-transfer 
coefficient is averaged, as a rule. Insertion of the quasistationary heat-transfer coeffi- 
cients does not reduce the problem of nonstationary heat transfer. Unfortunately, there are 
no relationships on the change in the heat-transfer coefficient in time under transient heat- 
transfer conditions. 
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